3.298 \(\int \frac {1}{(e \csc (c+d x))^{5/2} (a+a \sec (c+d x))} \, dx\)

Optimal. Leaf size=120 \[ \frac {2 \sin (c+d x)}{3 a d e^2 \sqrt {e \csc (c+d x)}}-\frac {2 \sin (c+d x) \cos (c+d x)}{5 a d e^2 \sqrt {e \csc (c+d x)}}-\frac {4 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{5 a d e^2 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \]

[Out]

2/3*sin(d*x+c)/a/d/e^2/(e*csc(d*x+c))^(1/2)-2/5*cos(d*x+c)*sin(d*x+c)/a/d/e^2/(e*csc(d*x+c))^(1/2)+4/5*(sin(1/
2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))/a/d/e^2/(e
*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3878, 3872, 2839, 2564, 30, 2569, 2639} \[ \frac {2 \sin (c+d x)}{3 a d e^2 \sqrt {e \csc (c+d x)}}-\frac {2 \sin (c+d x) \cos (c+d x)}{5 a d e^2 \sqrt {e \csc (c+d x)}}-\frac {4 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{5 a d e^2 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Csc[c + d*x])^(5/2)*(a + a*Sec[c + d*x])),x]

[Out]

(-4*EllipticE[(c - Pi/2 + d*x)/2, 2])/(5*a*d*e^2*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x]]) + (2*Sin[c + d*x])/(
3*a*d*e^2*Sqrt[e*Csc[c + d*x]]) - (2*Cos[c + d*x]*Sin[c + d*x])/(5*a*d*e^2*Sqrt[e*Csc[c + d*x]])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2569

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(b*Sin[e +
 f*x])^(n + 1)*(a*Cos[e + f*x])^(m - 1))/(b*f*(m + n)), x] + Dist[(a^2*(m - 1))/(m + n), Int[(b*Sin[e + f*x])^
n*(a*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*m
, 2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3878

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {1}{(e \csc (c+d x))^{5/2} (a+a \sec (c+d x))} \, dx &=\frac {\int \frac {\sin ^{\frac {5}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx}{e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=-\frac {\int \frac {\cos (c+d x) \sin ^{\frac {5}{2}}(c+d x)}{-a-a \cos (c+d x)} \, dx}{e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \cos (c+d x) \sqrt {\sin (c+d x)} \, dx}{a e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {\int \cos ^2(c+d x) \sqrt {\sin (c+d x)} \, dx}{a e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=-\frac {2 \cos (c+d x) \sin (c+d x)}{5 a d e^2 \sqrt {e \csc (c+d x)}}-\frac {2 \int \sqrt {\sin (c+d x)} \, dx}{5 a e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {\operatorname {Subst}\left (\int \sqrt {x} \, dx,x,\sin (c+d x)\right )}{a d e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=-\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{5 a d e^2 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {2 \sin (c+d x)}{3 a d e^2 \sqrt {e \csc (c+d x)}}-\frac {2 \cos (c+d x) \sin (c+d x)}{5 a d e^2 \sqrt {e \csc (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.83, size = 100, normalized size = 0.83 \[ \frac {8 \sqrt {1-e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};e^{2 i (c+d x)}\right ) (\cot (c+d x)+i)+20 \sin (c+d x)-6 (\sin (2 (c+d x))+4 i)}{30 a d e^2 \sqrt {e \csc (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Csc[c + d*x])^(5/2)*(a + a*Sec[c + d*x])),x]

[Out]

(8*Sqrt[1 - E^((2*I)*(c + d*x))]*(I + Cot[c + d*x])*Hypergeometric2F1[1/2, 3/4, 7/4, E^((2*I)*(c + d*x))] + 20
*Sin[c + d*x] - 6*(4*I + Sin[2*(c + d*x)]))/(30*a*d*e^2*Sqrt[e*Csc[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {e \csc \left (d x + c\right )}}{a e^{3} \csc \left (d x + c\right )^{3} \sec \left (d x + c\right ) + a e^{3} \csc \left (d x + c\right )^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(5/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(e*csc(d*x + c))/(a*e^3*csc(d*x + c)^3*sec(d*x + c) + a*e^3*csc(d*x + c)^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \csc \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(5/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((e*csc(d*x + c))^(5/2)*(a*sec(d*x + c) + a)), x)

________________________________________________________________________________________

maple [C]  time = 1.40, size = 551, normalized size = 4.59 \[ \frac {\left (12 \cos \left (d x +c \right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-i \cos \left (d x +c \right )+\sin \left (d x +c \right )+i}{\sin \left (d x +c \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-6 \cos \left (d x +c \right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-i \cos \left (d x +c \right )+\sin \left (d x +c \right )+i}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )+3 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )+12 \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-i \cos \left (d x +c \right )+\sin \left (d x +c \right )+i}{\sin \left (d x +c \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-6 \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-i \cos \left (d x +c \right )+\sin \left (d x +c \right )+i}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-5 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+3 \cos \left (d x +c \right ) \sqrt {2}-\sqrt {2}\right ) \sqrt {2}}{15 a d \left (\frac {e}{\sin \left (d x +c \right )}\right )^{\frac {5}{2}} \sin \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*csc(d*x+c))^(5/2)/(a+a*sec(d*x+c)),x)

[Out]

1/15/a/d*(12*cos(d*x+c)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*(
(-I*cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*EllipticE(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^
(1/2))-6*cos(d*x+c)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*((-I*
cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2
))+3*2^(1/2)*cos(d*x+c)^3+12*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1
/2)*((-I*cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*EllipticE(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1
/2*2^(1/2))-6*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*((-I*cos(d*
x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-5*c
os(d*x+c)^2*2^(1/2)+3*cos(d*x+c)*2^(1/2)-2^(1/2))/(e/sin(d*x+c))^(5/2)/sin(d*x+c)^3*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \csc \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(5/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((e*csc(d*x + c))^(5/2)*(a*sec(d*x + c) + a)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )}{a\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{5/2}\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a/cos(c + d*x))*(e/sin(c + d*x))^(5/2)),x)

[Out]

int(cos(c + d*x)/(a*(e/sin(c + d*x))^(5/2)*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))**(5/2)/(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________